

1. (Amended) A liquid composition of matter that is suitable as electrolyte for a nonsludging electrolytic zinc phosphate treatment process, said liquid composition comprising water, dissolved phosphoric acid, dissolved nitric acid, dissolved zinc cations, *m* chemically distinct species of cations other than zinc, and *n* chemically distinct species of anions other than anions derivable by ionization of phosphoric and nitric acids, each of *m* and *n* independently being zero or a positive integer, the concentration of zinc in moles per liter in said liquid composition satisfying the following mathematical condition:

$$\{Zn\} \le 0.3 \{H_3PO_4\} + 0.5 \{HNO_3\} - 0.5 \sum_{i=0}^{m} p_i C_i + 0.5 \sum_{j=0}^{n} q_j A_j$$

in which: "{Zn}", "{H₃PO₄}", and "{HNO₃}" respectively represent the zinc, phosphoric acid, and nitric acid concentrations in mol/L; each of C_0 and A_0 is zero; each of p_0 and q_0 is 1; if *m* is not zero, for each positive integer *i* from 1 to *m*, *C_i* represents the concentration in mol/L of the *i* th distinct cation species other than zinc present in the bath and p_i represents the cationic valence of said *i* th distinct cation species; and if *n* is not zero, for each positive integer *j* from 1 to *n*, A_j represents the concentration in mol/L of the *j* th distinct anion species other than anions derivable by ionization of phosphoric or nitric acids present in the bath and q_j represents the anionic valence of said *j* th distinct anion species;

- the phosphoric acid concentration is from 0.25 to 0.50 mol/L;- the nitric acid concentration is from 0.65 to 0.90 mol/L; and $- {Zn} ≥ 0.27 {H₃PO₄} + 0.45 {HNO₃} - <math>\overline{0.45 \sum_{i=0}^{m} p_i C_i} + 0.45 \sum_{i=0}^{n} p_i C_i$

12. (Amended) A liquid composition that is suitable as electrolyte for a nonsludging electrolytic zinc phosphate treatment process, said liquid composition comprising water, at least 0.10 mol/L dissolved phosphoric acid, at least 0.3 mol/L [0.10 mol/L] dissolved nitric acid, dissolved zinc cations, *m* chemically distinct species of cations other than zinc, and *n* chemically distinct species of anions other than anions derivable by ionization of phosphoric and nitric acids, each of *m* and *n* independently being zero or a positive integer, the concentration of zinc in moles per liter in said liquid composition satisfying both of the following mathematical

S rial No. 09/914,701 Art Unit: 1742

conditions:

 $\{Zn\} \le 0.3 \{H_3PO_4\} + 0.5 \{HNO_3\} - 0.5 \sum_{i=0}^{m} p_iC_i + 0.5 \sum_{i=0}^{n} q_iA_i$; and

 $\{Zn\} \ge 0.15 \ \{H_3PO_4\} + 0.25 \ \{HNO_3\} - 0.25 \ \sum_{i=0}^m p_i C_i + 0.25 \ \sum_{j=0}^n q_j A_j.$

in which : "{Zn}", "{H₃PO₄}", and "{HNO₃}" respectively represent the zinc, phosphoric acid, and nitric acid concentrations in mol/L; each of C₀ and A₀ is zero; each p₀ and q₀ is 1; if *m* is not zero for each positive integer *j* from 1 to *m*, C_{*j*} represents the concentration in mol/L of the *j*th distinct cation species other than zinc present in the bath and p_{*j*} represents the cationic valence of said *j*th distinct cation species; and if *n* is not zero, for each positive integer *j* from 1 to *n*, A_{*j*} represents the concentration in mol/L of the *j*th distinct anion species other than anions derivable by ionization of phosphoric or nitric acids present in the bath and q_{*j*} represents the anionic valence of said *j*th distinct anion species, wherein {Zn}/{H₃PO₄} < 0.91.